Ol ⁱ —Ga1—O2	119.59 (9)	O1—Ga2—O2 ⁱⁱⁱ	91.87 (7)
Ol ⁱ —Gal—O3 ⁱⁱ	106.79 (7)	O1—Ga2—O3	94.66 (7)
O2-Ga1-O3 ⁱⁱ	105.92 (7)	O2—Ga2—O2`	94.14 (7)
O3 ⁱⁱ —Ga1—O3 ^{iv}	111.9(1)	O2Ga2O2 ⁱⁱⁱ	80.91 (6)
O1-Ga2-O1 ^v	103.22 (9)	O2Ga2O3	91.95 (7)
$01 - G_{2} - O_{2}^{2}$	80.91 (6)		

Symmetry codes: (i) x, y, 1+z; (ii) -x, -y, 1-z; (iii) $\frac{1}{2}-x$, $\frac{1}{2}-y$, 1-z; (iv) -x, 1-y, 1-z; (v) x, 1+y, z.

The starting parameters for the refinement were taken from Geller (1960). One reflection (234) with $\Delta F/\sigma = 53.6$ was removed since the next largest value (5.2 for $\overline{3}10$) is more than 90% smaller. The large residual electron density (2.89 e Å⁻³) is situated between Ga1 and Ga2. Refinement including this position as possible disorder did not lead to an improved model. Anharmonic tensors were also used in an attempt to describe the residual electron density as thermal displacement. Third and fourth order (γ , δ) tensor components in the Edgeworth expansion were refined, but neither $\Delta \rho$ nor the *R* values were significantly improved.

Wolten & Chase (1976) proposed that the space group for β -Ga₂O₃ should be P1. No evidence has been found in the present study to support this, since the diffraction symmetry and systematic extinctions clearly indicate a Ccentered monoclinic cell, as discussed by Geller (1977). Refinement of the structure in space group P1 gave no improvement.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: LATCON (Schwarzenbach & King, 1992). Data reduction: CRYST (Lundgren, 1982). Program(s) used to solve structure: CRYST. Program(s) used to refine structure: CRYST. Software used to prepare material for publication: TEXSAN (Molecular Structure Corporation, 1992).

Support from the Swedish National Science Council (NFR) is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: FG1144). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Åhman, J., Svensson, G. & Albertsson, J. (1995). Acta Chem. Scand. In the press.
- Aubay, E. & Gourier, D. (1992). J. Phys. Chem. 96, 5513-5520.
- Becker, P. J. & Coppens, P. (1975). Acta Cryst. A31, 417-425.
- Büscher, R. & Lehmann, G. (1987). Z. Naturforsch. Teil A, 42, 67-71. Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Geller, S. (1960). J. Chem. Phys. 33, 676-684.
- Geller, S. (1977). J. Solid State Chem. 20, 209-210.
- Harwing, T., Kellendonk, F. & Slappendel, S. (1978). J. Phys. Chem. Solids, 39, 675-670.
- Lundgren, J. O. (1982). Report UUIC-B13-4-05. Institute of Chemistry, University of Uppsala, Sweden.
- Marezio, M. & Remeika, J. P. (1967). J. Chem. Phys. 46, 1862–1865.
 Matsumoto, T., Aoki, M., Kinoshita, A. & Aono, T. (1974). Jpn J. Appl. Phys. 13, 1578–1582.
- Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved

- Schwarzenbach, D. & King, G. (1992). LATCON. Xtal3.2 Reference Manual. Edited by S. R. Hall, H. D. Flack & J. M. Stewart, Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
- Wolten, G. M. & Chase, A. B. (1976). J. Solid State Chem. 16, 377-383.

Acta Cryst. (1996). C52, 1338-1341

Ba₃[V₁₀O₂₈].19H₂O

BORIS KAMENAR, MARINA CINDRIĆ AND NEVEN STRUKAN

Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Ul. kralja Zvonimira 8, PO Box 153, 10000 Zagreb, Croatia. E-mail: neven. strukan@public.srce.hr

(Received 26 October 1995; accepted 19 December 1995)

Abstract

The crystal structure of barium decavanadate nonadecahydrate, Ba₃[V₁₀O₂₈].19H₂O, has been determined. The polyanion consists of ten distorted VO₆ edge-sharing octahedra and has a well established structure. There are two crystallographically independent decavanadate anions in the asymmetric unit, located around the centres of inversion at $\frac{1}{2}$,0,0 and $0, \frac{1}{2}, \frac{1}{2}$. Each of the three Ba²⁺ cations is surrounded by nine O atoms from water molecules and [V₁₀O₂₈]⁶⁻ anions in a distorted square antiprism with one additional vertex.

Comment

Several structures containing the $[V_{10}O_{28}]^{6-}$ anion are known from the literature: Na₆[V₁₀O₂₈].18H₂O (Durif, Averbuch-Pouchot & Guitel, 1980), Ca₃[V₁₀O₂₈].17H₂O (Marvin & Magin, 1959; Swallow, Ahmed & Barnes, 1966), Sr₃[V₁₀O₂₈].22H₂O (Nieto, Salagre, Medina, Sueritas & Solans, 1993), Er₂[V₁₀O₂₈].25H₂O (Rivero, Rigotti, Punte & Navaza, 1984) and double salts such as K₂Mg₂[V₁₀O₂₈].16H₂O, Cs₂Mg₂[V₁₀O₂₈].16H₂O and K₂Zn₂[V₁₀O₂₈].16H₂O (Weeks, Cisney & Sherwood, 1951; Evans, 1966). However, although the title compound was prepared 120 years ago (Norblad, 1875), up to now its structure has remained unsolved.

The title compound was prepared and studied as part of our research on molybdates, vanadates and mixed molybdovanadates (Kamenar, Cindrić & Strukan, 1994; Cindrić, Kamenar, Strukan & Veksli, 1995). The decavanadate anion consists of ten distorted VO₆ octahedra sharing edges and is basically the same as that found in other inorganic decavanadates. The two crystallographically independent $[V_{10}O_{28}]^{6-}$ anions in the asymmetric unit are located around the crystallographic centres of inversion at $\frac{1}{2}$,0,0 and $0, \frac{1}{2}, \frac{1}{2}$. The V—O distances are similar to those already observed and depend upon the type of oxo ligand: V=O_t bond lengths to the terminal oxo O atoms vary between 1.599 (5) and 1.617 (5) Å, V—O_b bond lengths to the O atoms bonded to two V atoms vary from 1.681 (4) to 2.094 (4) Å, V—O_{3b} bond lengths to the O atoms bonded to three V atoms vary

Fig. 1. A view of one of the two crystallographically independent $[V_{10}O_{28}]^{6-}$ anions in the title compound showing the atomlabelling scheme. Displacement ellipsoids are shown at the 50% probability level. The other anion has essentially the same features and an analogous labelling scheme.

Fig. 2. A view of the bridging of the decavanadate anions by the hydrated Ba^{2+} cations.

from 1.888 (4) to 2.043 (4) Å and V—O_{6b} bond lengths to the O atoms shared between six V atoms range from 2.114 (4) to 2.336 (4) Å. The VO₆ octahedra are significantly distorted, with the bond angles at the V atoms ranging from 74.1 (2) to 107.3 (2)°.

The Ba²⁺ cations are surrounded by nine O atoms at distances varying from 2.744 (4) to 2.970 (6) Å. Ba1 and Ba3 are surrounded by six water O atoms and three O atoms from the polyanion, and Ba2 by five water O atoms and four O atoms from the polyanion. The coordination polyhedra around the Ba²⁺ ions can be described as highly distorted square antiprisms, each with one additional vertex. In spite of the suggestion that the charge-to-radius ratio of the cation determines the number of hydrate molecules of the compound (Nieto *et al.*, 1993), the present structure, that of the analogous sodium salt (Durif, Averbuch-Pouchot & Guitel, 1980) and those of the salts of some lanthanides or yttrium (Saf'yanov, Kuz'min & Belov, 1979; Rivero *et al.*, 1984) do not support such a conclusion.

Experimental

The title compound was prepared by mixing a hot water solution of MoO_3 and $Ba(OH)_2$ and a suspension of NH_4VO_3 in water, using hydrochloric acid to adjust to pH 5. The mixture was filtered off and solid $BaCl_2$ was added to the resulting yellow solution. After several days at room temperature, transparent orange crystals were isolated. The water content was determined thermogravimetrically.

Crystal data

Ba₃[V₁₀O₂₈].19H₂O $M_r = 1711.68$ Triclinic $P\overline{1}$ a = 9.491 (3) Å b = 12.201 (6) Å c = 18.786 (12) Å $\alpha = 81.27$ (3)° $\beta = 81.02$ (2)° $\gamma = 71.12$ (2)° V = 2021.2 (18) Å³ Z = 2 $D_x = 2.81$ Mg m⁻³ Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 40 reflections $\theta = 7.7-14.7^{\circ}$ $\mu = 5.13 \text{ mm}^{-1}$ T = 293 (2) K Prism $0.56 \times 0.48 \times 0.15 \text{ mm}$ Orange

Data collectionPhilips PW1100 diffractom-
eter8:
eter ω scansRAbsorption correction:
empirical via ψ scansh
(North, Phillips & k
Mathews, 1968) $T_{min} = 0.0796, T_{max} = 3$
0.20841111 054 measured reflections11037 independent

reflections

8545 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0617$ $\theta_{max} = 30.08^{\circ}$ $h = -13 \rightarrow 13$ $k = -16 \rightarrow 17$ $l = 0 \rightarrow 26$ 3 standard reflections frequency: 90 min intensity decay: 6.7%

Refinement				Ow17	0.9649 (11)	0.8454 (1	$\begin{array}{c} 3) & 0.2282 (5) \\ 0.7327 (6) \end{array}$	0.119 (6) 0.078 (3)	
Refinem	the neutrino on F^2	$(\Delta /$	σ) _{max} = 0.002		Ow18 Ow19	0.0539 (13)	0.0079 (7) 0.4133 (6)	0.097 (4)
$R(F) = 0.0587$ $\Delta \rho_{max} = 3.32 \text{ e} \text{ Å}^{-3}$		-3							
$wR(F^2)$	= 0.1557	$\Delta \rho_{r}$	min = -3.74 e	$Å^{-3}$	Table 2. Selected geometric parameters (A)				
S = 1.05	51	Exti	nction correct	ion: none	V11-01	13	1.612 (5)	V21-0213	1.617 (5)
10 996	reflections	Ato	mic scattering	factors	V11-01	05	1.796 (4)	V21-0205	1.810 (4)
541 par	ameters	fi	om Internatio	nal Tables	VII-01	00 02 ¹	1.850 (4)	V21-0200	2.004 (5)
$w = 1/f_{0}$	$\sigma^2(F_2^2) + (0.12)$	$(226P)^2$ for	or Crystallogr	aphy (1992,	V1101	03 ⁱ	2.011 (4)	V21—O203"	2.032 (4)
	7 3131 <i>P</i> 1	V V	ol. C, Tables	4.2.6.8 and	V11-01	01	2.208 (4)	V21-O201	2.238 (4)
where	$P = (F^2 + 2)$	$(F_{1}^{2})/3 = 6$.1.1.4)		V12—01	14	1.599 (5)	V22—O214	1.611 (5)
where $T = (T_0 + 2T_c)/5$			V12-01	08	1.802 (4)	V22-0207	1.807 (5)		
				les al aret	V12-01	07	1.801 (4)	V22-0208	1.984 (5)
Table 1. Fractional atomic coordinates and equivalent				V12-01	03	2.017 (4)	V22-0202	2.043 (4)	
isotropic displacement parameters (A^2)				1 ²)	V12-01	01	2.263 (4)	V22-0201	2.228 (5)
		$(1/2)\sum \sum U$	* -*		V13-01	11	1.612 (5)	V23-0211	1.603 (5)
	$U_{eq} =$	i (1/3)ک _ا کرن Uij۵	$l_i a_j \mathbf{a}_i \cdot \mathbf{a}_j$.		V13-01	04	1.836(5)	V23-0204 V23-0207	1.840 (5)
	x	у	z	U_{eq}	V13-01	107	1.839 (5)	V23-0205	1.894 (5)
V11	0.06785 (10)	0.66500 (9)	0.40039 (5)	0.0170 (2)	V13-0	109	2.041 (4)	V23-0209	2.029 (5)
V12	-0.07633 (11)	0.34605 (9)	0.43587 (6)	0.0175 (2)	V13-0	101	2.302 (4)	V23-0201	2.336 (4)
V13	0.15492 (11)	0.43592 (9)	0.32801 (6)	0.0190(2)	V140	112	1.608 (5)	V24—0212	1.613 (5)
V14 V15	-0.17506 (11)	0.38879(10)	0.34493(0)	0.0150(2)	V14—0	104	1.839 (5)	V24	1.797 (4)
0101	-0.0024(4)	0.5065 (4)	0.4283 (2)	0.0162 (7)	V140	106	1.858 (5)	V24	1.800 (5)
0102	-0.1906 (4)	0.4252 (4)	0.5208 (2)	0.0167 (7)	V14-0	110	2 028 (4)	V24-0210	2.094 (4)
O103	0.0739 (4)	0.3052 (4)	0.5082 (2)	0.0169 (7)	V14-0	101	2.311 (4)	V24-0201	2.275 (5)
0104	-0.0113 (5)	0.5179 (4)	0.2822 (2)	0.0231 (9)	V15-0	109	1.681 (4)	V25-0209	1.684 (4)
O105	0.1950 (4)	0.5782 (4)	0.3342(2) 0.3406(3)	0.0190 (8)	V15—0	110'	1.695 (4)	V25—O210 ⁿ	1.694 (5)
0105	-0.0946 (5)	0.7084 (4)	0.3490(3) 0.3624(2)	0.0196 (8)	V15-0	103	1.888 (4)	V25—0202"	1.905 (5)
0108	-0.2064(5)	0.4441(4)	0.3770 (2)	0.0198 (8)	V15-0	102	1.939 (4)	V25-0203	2 135 (4)
O109	0.2802 (4)	0.3786 (4)	0.4130 (2)	0.0200 (8)	V15-0	101	2.122 (4)	V25-0201"	2.138 (4)
O110	-0.2887 (4)	0.6337 (4)	0.4419 (2)	0.0192 (8)	Symme	try codes: (i)	-r = v = v = -	-7 (ii) $1 - x_1 - y_2 - y_2$	-7.
0111	0.2772 (5)	0.3843 (5)	0.2619(3)	0.0271(10) 0.0278(10)	Synance		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		~
0112	-0.3024 (3)	0.0317(3) 0.7778(4)	0.3858 (3)	0.0238 (9)		Tabl	e 3. Conta	ct distances (A)	
0113	-0.1274(6)	0.2313 (4)	0.4490 (3)	0.0278 (10)	BalC	0111	2,839 (5)	Ba2···Ow2 ⁱⁱⁱ	2.845 (5)
V21	0.68216 (10)	-0.16351 (8)	-0.08468 (5)	0.0156 (2)	Bal····C	206 ⁱ	2.771 (6)	Ba2· · ·Ow5 ⁱⁿ	2.809 (7)
V22	0.55147 (10)	-0.06635 (9)	0.14050 (5)	0.0161 (2)	Bal···C)212 ¹¹	2.821 (6)	Ba2···Ow6 [™]	2.832 (7)
V23	0.85008(11)	-0.1003/(10) -0.28834(9)	0.04610(6)	0.0213(2) 0.0195(2)	Bal···C)w1'''	2.861 (6)	$Ba2 \cdot \cdot \cdot Ow8'''$ $Ba2 \cdot 0107$	2.700(0)
V24 V25	0.63230 (10)	0.06440 (9)	-0.01159(5)	0.0158 (2)	Bal	Jw3 ^{iv}	2.941 (3)	Ba30213	2.842 (5)
0201	0.5988 (4)	-0.1008 (4)	0.0247 (2)	0.0177 (8)	Bal	Dw4 ⁱⁱⁱ	2.805 (6)	Ba3· · ·O214	2.877 (5)
O202	0.3461 (4)	-0.0080 (4)	0.1031 (2)	0.0178 (8)	Bal····	Dw5 ⁱⁱⁱ	2.970 (6)	Ba3· · · Ow2 ^{vi}	2.957 (7)
O203	0.5424 (4)	0.0880 (4)	0.0861 (2)	0.0174 (8)	Bal···C	Dw10	2.785 (6)	Ba3···Ow6 ^{vi}	2.866 (6)
0204	0.8029 (5)	-0.3033(4) -0.1881(4)	-0.0733(2)	0.0214(8)	Ba2···(0105	2.834 (5)	$Ba3 \cdots Ow9$ $Ba3 \cdots Ow12^{11}$	2.821 (8)
0203	0.6012 (5)	-0.2937(4)	-0.0356(2)	0.0216 (8)	Ba2···(0112	2.771 (3)	$Ba3 \cdots Ow 12$ Ba3 $\cdots Ow 18^{vir}$	2.805 ())
O200	0.7535 (5)	-0.1073 (4)	0.1328 (2)	0.0216 (8)	Ba2····(0208 ⁱⁱ	2.799 (4)	Ba3Ow19	2.789 (12)
O208	0.5382 (5)	-0.2142 (4)	0.1503 (2)	0.0201 (8)	Ba2····	Dw1 ⁱⁱⁱ	2.861 (6)		
O209	0.8111 (5)	0.0038 (4)	0.0067 (3)	0.0225 (9)	Symme	try codes: (i) 1	-x, -y, -z	(ii) x, 1 + y, z; (iii) 1	-x, 1-y, 1-z;
0210	0.3903 (5)	0.2062 (4)	0.0424(2) 0.0570(3)	0.0210(8) 0.0316(11)	(iv) 1-	x, 1-y, -z; (v)	1+x, y, z; (v)	i) $1-x, -y, 1-z;$ (vii)-x, 1-y, 1-z.
0211	0.5920(5)	-0.4154(4)	0.0930 (3)	0.0274 (10)	41	- ations with	A/- > 5 m	are omitted from	he refinement
0213	0.7225 (6)	-0.1971 (5)	-0.1671 (3)	0.0297 (10)	41 reii	f the H stor	$\Delta / 0 > 3$ w	eter molecules w	are found in a
O214	0.4945 (6)	-0.0288 (5)	0.2212 (3)	0.0283 (10)	MOSE			but they were no	ither included
Bal	0.39943 (4)	0.44510(3)	0.11925(2)	0.02452(10)	nnai c	interence Fo	urier map,	but they were no	culations The
Ba2 Ba2	0.39430 (4)	0.70900(3) 0.10221(4)	0.28091(2) 0.31434(2)	0.02000(10) 0.03116(12)	in the	rennement n	or in the s	iruciule-laciol ca	near the Po ²⁺
Owl	0.4655 (6)	0.5183 (5)	0.7641 (3)	0.0302 (10)	largest	remaining d	inerence p	eaks were located	near the Da
Ow2	0.8034 (6)	0.0694 (5)	0.7663 (3)	0.0295 (10)	cation	s			(Star & Cia
Ow3	0.6601 (6)	0.3946 (5)	0.0081 (3)	0.0328 (11)	Dat	a collection	and cell r	efinement: DIF4	(Stoe & Cle,
Ow4	0.3889 (6)	0.7673 (6)	0.8392 (3)	0.0397(13) 0.0345(11)	1992a). Data redu	ction: REL	0U4 (Stoe & Cie	, 1992 <i>b</i>). The
Ow5 Ow6	0.7415(0)	0.3171(3) 0.1279(5)	0.8332(3) 0.6317(3)	0.0378 (12)	structu	ire was solv	ed by Patt	erson and Fourie	r methods us-
Ow7	0.5833 (6)	0.3318 (6)	0.3671 (4)	0.0394 (13)	ing SI	HELXS86 (S	heldrick, 1	985) and refined	by full-matrix
Ow8	0.5411 (6)	0.4189 (6)	0.5872 (3)	0.0392 (14)	least s	quares on F^2	using SHI	ELXL93 (Sheldric	k, 1993). Soft-
Ow9	0.3071 (8)	0.1072 (6)	0.4560 (4)	0.049 (2)	ware u	ised to prepa	re molecula	r graphics and ma	aterial for pub-
Ow10	0.0878 (7)	0.5308 (7)	0.1319(4)	0.053 (2)	licatio	n: ORTEPII	(Johnson,	1976), PLUTON	(Spek, 1982),
Owl1 Owl2	0.9223 (8)	0.4143(7)	0.6948 (4)	0.051 (2)	SHEL	XL93, CSU (Vicković, 1	1988).	
Ow12 Ow13	0.9142 (9)	0.1021 (8)	0.1305 (5)	0.063 (2)					
Ow14	0.8432 (8)	0.4014 (7)	0.2039 (4)	0.058 (2)	Th	is work was	supporte	d by the Minist	ry of Science
Ow15	0.5996 (9)	0.1329 (7)	0.4818 (4)	0.057 (2)	and T	echnology	of the Re	public of Croati	1.
Ow16	0.6712(10)	0.9209 (8)	0.3734(6)	0.070(3)	and I	cennorogy	or are reep		

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BR1133). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Cindrić, M., Kamenar, B., Strukan, N. & Veksli, Z. (1995). Polyhedron, 14, 1045-1049.
- Durif, A., Averbuch-Pouchot, M. T. & Guitel, J. C. (1980). Acta Cryst. B36, 680-682.
- Evans, H. T. Jr (1966). Inorg. Chem. 5, 967-977.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kamenar, B., Cindrić, M. & Strukan, N. (1994). Polyhedron, 13, 2271-2275.
- Marvin, R. & Magin, G. B. (1959). US Geol. Surv. Prof. Pap. 320, 107-110.
- Nieto, J. M., Salagre, P., Medina, F., Sueritas, J. E. & Solans, X. (1993). Acta Cryst. C49, 1879–1881.

- Norblad, J. A. (1875). Bull. Soc. Chim. Fr. 24, 64-71.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Rivero, B. E., Rigotti, G., Punte, G. & Navaza, A. (1984). Acta Cryst. C40, 715-718.
- Saf'yanov, Yu. N., Kuz'min, E. A. & Belov, N. V. (1979). Kristallografiya, 24, 767-771.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. University of Göttingen, Germany.
- Spek, A. L. (1982). The EUCLID Package. Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.
- Stoe & Cie (1992a). DIF4. Diffractometer Control Program. Version 7.09. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1992b). REDU4. Data Reduction Program. Version 7.03. Stoe & Cie, Darmstadt, Germany.
- Swallow, A. G., Ahmed, F. R. & Barnes, W. H. (1966). Acta Cryst. 21, 397-405.
- Vicković, I. (1988). J. Appl. Cryst. 21, 987-990.
- Weeks, A. D., Cisney, E. A. & Sherwood, A. M. (1951). Am. Mineral. 36, 326–327.